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ANTIANGIOGENIC THERAPY IN CANCER TREATMENT AS AN
OPTIMAL CONTROL PROBLEM∗
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Abstract. Antiangiogenic therapy is a novel treatment approach in cancer therapy that aims
at preventing a tumor from developing its own blood supply system that it needs for growth. In this
paper a mathematical model for antiangiogenic treatments based on a biologically validated model
by Hahnfeldt et al. is analyzed as an optimal control problem and a full solution of the problem is
given. Geometric methods from optimal control theory are utilized to arrive at the solution.
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1. Introduction. The most important limiting factor for the success of cancer
chemotherapy treatments lies in both intrinsic and acquired drug resistance. Malig-
nant cancer cell populations are highly heterogeneous—the number of genetic errors
present within one cancer cell can lie in the thousands [16]—and fast duplications
combined with genetic instabilities provide just one of several mechanisms which al-
low for quickly developing acquired resistance to anticancer drugs. In addition, in-
trinsic resistance (i.e., the specific drug’s activation mechanism simply doesn’t work)
makes some cancer cells not susceptible to many cytotoxic agents. “. . . the truly sur-
prising thing is that some malignancies can be cured even with current approaches”
[8, p. 65]. Several mechanisms to circumvent the problem of drug resistance have been
tried but so far without success, and currently no medical solution to the problem
exists. In fact, it is acquired or intrinsic drug resistance which eventually makes most
chemotherapy fail. At the same time, similar phenomena do not take place for the
healthy proliferating cells. For example, regretfully, bone marrow does not develop
drug resistance to the killing agent [10].

As of today, the search for therapy approaches that would avoid drug resistance
still is of tantamount importance in medicine. Two such approaches that are cur-
rently being pursued in their experimental stages are immunotherapy and antiangio-
genic treatments. While immunotherapy tries to coax the body’s immune system to
take action against the cancerous growth, tumor antiangiogenesis aims at depriving
a tumor from developing the necessary blood cells and capillaries that it needs for
further growth. Since the treatment does not target cancer cells but normal cells, no
occurrence of drug resistance has been reported in lab studies. (These treatments,
however, are only in the stage of experimental studies and initial clinical trials.) For
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this reason tumor antiangiogenesis has been called a therapy resistant to resistance
which provides a new hope in treatment of tumor-type cancers [10].

There exist several mathematical models for the evolution of tumor antiangiogene-
sis as a dynamical system, with the one formulated by Hahnfeldt et al. in [9] probably
being the most prominent one. This model was biologically validated in lab ex-
periments and became the basis for several modifications and simplifications [5, 6]
undertaken in an effort to both better understand the dynamical properties of the un-
derlying mechanisms and to make the mathematical model easier and more tractable
for analysis. For example, a dynamical systems analysis of the model by Hahnfeldt
et al. and of several modifications (with more general growth models for the growth
of cancer cells and slightly different dynamics for the evolution related to endothelial
cells) is given in the paper by d’Onofrio and Gandolfi [5]; Ergun, Camphausen, and
Wein [6] consider an optimal control problem for the scheduling of antiangiogenic
inhibitors both as monotherapy and in combination with radiotherapy. While these
models are variations of the specific dynamics proposed by Hahnfeldt et al. in [9], in
the papers by Agur et al. [1] and Forys, Keifetz, and Kogan [7] more generally dynam-
ical properties of models for angiogenesis are investigated under minimal assumptions
on the form of the growth functions describing the dynamics.

In this paper we consider the original mathematical model for tumor antiangioge-
nesis formulated and validated by Hahnfeldt et al. in [9] and analyze it as an optimal
control problem. Using geometric methods of optimal control theory, for this model
we compute how to schedule a given amount of angiogenic inhibitors to achieve the
maximum reduction in tumor volume possible. The key feature of the solution is an
optimal singular arc whose geometric analysis forms the core of the mathematical ar-
gument. Optimal controls then are concatenations of bang controls (constant controls
that give either a full or no dose of inhibitors) and the optimal singular control (a
specific smooth control that administers the inhibitors using a time-varying feedback
schedule at less than a maximum rate). The most general structure of optimal controls
possible is a concatenation of the form “0asa0, ” where a and 0 denote trajectories
with full, respectively, no antiangiogenic therapy, and s stands for a segment along the
singular arc. However, depending on the initial condition not all of these pieces are
present. Our theoretical analysis reduces the structure of optimal controls to at most
this structure but for some initial conditions still allows for a one-parameter family
of extremals of this form. Then, given any initial condition, the optimal solution is
easily computed numerically based on our analysis. The most typical and medically
most relevant scenarios are optimal protocols that take the simple form “a0” when
all inhibitors are administered at the beginning or “as0” when the dosage is adjusted
as the singular arc is reached and then all available inhibitors are being used up along
the singular arc. If the optimal policy along the singular arc comes close to a point
where the singular control saturates at the upper value a, then optimal trajectories
actually leave the singular arc prior to saturation (and this is consistent with the
behavior of optimal controls near saturation points; see, for example, [17] or [2]) and
are of the type “asa0.” The full structure “0asa0” arises only for initial conditions
that are not significant for the underlying problem.

A preliminary announcement of some partial results presented in this paper has
been given without proofs in [14]. Here the analysis is completed, and proofs are
included.

2. Medical background and mathematical model [9]. A growing tumor,
after it reaches just a few millimeters in diameter, no longer can rely on blood vessels
of the host for its supply of nutrients, but it needs to develop its own vessels and
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capillaries for blood supply. In this process, called angiogenesis, there is a reciprocal
signaling between endothelial cells and tumor cells. Tumor cells produce vascular en-
dothelial growth factor (VEGF) to stimulate endothelial cell growth; endothelial cells
in turn provide the lining for the newly forming blood vessels that supply nutrients
to the tumor and thus sustain tumor growth. But endothelial cells also have recep-
tors which make them sensitive to inhibitors of inducers of angiogenesis such as, for
example, endostatin, and pharmacologic therapies typically target the growth factor
VEGF trying to impede the development of new blood vessels and capillaries. Over-
all, angiogenesis can be viewed as a complex balance of stimulatory and inhibitory
mechanisms regulated through microenvironmental factors.

In the model developed by Hahnfeldt et al. in [9] these effects are summarized in a
two-dimensional dynamical system with the primary tumor volume p and the carrying
capacity of the vasculature q as variables. The latter is defined as the “maximal
tumor volume potentially sustainable by the network” [9] and is implicitly assumed
proportional to the number of endothelial cells. Thus the set D0 = {(p, q) ∈ R

2
+ :

p = q} corresponds to points where the vasculature is adequate to support the tumor,
while D− = {(p, q) ∈ D : p < q} corresponds to growing tumors and D+ = {(p, q) ∈
D : p > q} to shrinking tumors. A growth function describes the size of the tumor
dependent on the carrying capacity q and is chosen as Gompertzian in the original
model. Other models are equally realistic and are considered, for instance, in [5] or
[7], but here we stay with the original choice. Thus the rate of change in the primary
tumor volume is modeled as

(2.1) ṗ = −ξp ln

(
p

q

)
,

where ξ denotes a tumor growth parameter. The overall dynamics for the carrying
capacity is a balance between stimulation and inhibition, and its basic structure is of
the form

(2.2) q̇ = −μq + S(p, q) − I(p, q) −Guq,

where μq describes the loss of endothelial cells due to natural causes (death, etc.),
I and S denote endogenous inhibition and stimulation terms, respectively, and Guq
represents a loss due to additional outside inhibition. The variable u represents the
control in the system and corresponds to the angiogenic dose rate, while G is a constant
that represents the antiangiogenic killing parameter. Generally μ is small, often this
term is negligible compared to the other factors, and thus in the literature often μ is
set to 0 in this equation.

In [9] a spatial analysis of the underlying consumption-diffusion model was carried
out that led to the following two principal conclusions:

1. The inhibitor will impact endothelial cells in a way that grows like the volume
of cancer cells to the power 2

3 .
The exponent 2

3 arises since inhibitors need to be released through the surface of the
tumor. Thus in [9] the inhibitor term is taken in the form

(2.3) I(p, q) = dp
2
3 q,

with d a constant, the “death” rate. The second implication of the analysis in [9] is
that:

2. the inhibitor term will tend to grow at a rate of qαpβ faster than the stimulator
term where α + β = 2

3 .
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However, the choice of α and β is not imperative in their analysis and in fact is one of
the main sources for the various other models also considered in the literature [5, 6].
In their original work [9] Hahnfeldt et al. select α = 1 and β = − 1

3 resulting in the
simple stimulation term

(2.4) S(p, q) = bp,

with b a constant, the “birth” rate. However, other choices are possible, and, for
example, choosing α = 0 and β = 2

3 results in the equally simple form S(p, q) = bq
chosen in [5]. In that paper the dynamics for both models is analyzed, and it is shown
for the uncontrolled system that there exists a unique globally asymptotically stable
equilibrium (which, of course, is not viable biologically). Adding a control term, this
equilibrium can be shifted to lower values or, depending on the parameter values,
even eliminated altogether. In the latter case all trajectories converge to the origin in
infinite time. This, in principle, would be the desired situation.

The problem then becomes how to administer a given amount of inhibitors to
achieve the “best possible” effect. In this paper we use the dynamics of the original
model from [9] and formulate this aim as the following optimal control problem.

[HPFH]. For a free terminal time T , minimize the value p(T ) subject to the
dynamics

ṗ = −ξp ln

(
p

q

)
, p(0) = p0,(2.5)

q̇ = bp− (μ + dp
2
3 )q −Guq, q(0) = q0,(2.6)

ẏ = u, y(0) = 0,(2.7)

over all measurable functions u : [0, T ] → [0, a] for which the corresponding trajectory
satisfies y(T ) ≤ A.

As is customary in optimal control formulations, we adjoin the constraint as a
third variable. Later on, for all of our numerical illustrations we use the following pa-
rameter values which are taken from [9]: The variables p and q are volumes measured
in mm3; ξ = 0.192

ln 10 = 0.084 per day (adjusted to the natural logarithm), b = 5.85 per
day, d = 0.00873 per mm2 per day, G = 0.15 kg per mg of dose per day, and for
illustrative purposes we chose a small positive value for μ: μ = 0.02 per day. But we
want to emphasize already that our mathematical analysis and conclusions are valid
independently of the specific parameter values and lead to robust implications about
the structure of optimal controls for this model.

3. The dynamical systems for constant controls. For the analysis of the
optimal control problem it is of benefit to fully understand the dynamic properties of
the systems for a constant control u ≡ v, with v some value in the control set [0, a].
Our statements in this section are only minor extensions of the analysis given in the
paper by d’Onofrio and Gandolfi [5], and we refer the reader to that paper for the
proofs about our claims of stability properties of the equilibria. All statements are
for the natural domain R

2
+ = {(p, q) : p > 0, q > 0} of the system. The following fact

about the dynamical behavior of the system is an easy corollary of the results proven
in [5].

Proposition 3.1. For any admissible control u and arbitrary positive initial
conditions p0 and q0, the corresponding solution (p, q) exists for all times t ≥ 0, and
both p and q remain positive.
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Assuming b > μ, the uncontrolled system (u = 0) has a unique globally asymptot-

ically stable equilibrium point at (p̄, q̄) given by p̄ = q̄ = ( b−μ
d )

3
2 . This value naturally

is far too high to be acceptable, and the medically relevant region is contained in the
domain

(3.1) D = {(p, q) : 0 < p ≤ p̄, 0 < q ≤ q̄}.

In order to exclude irrelevant discussions about the structure of optimal controls in
regions where the model does not represent the underlying medical problem to begin
with, we henceforth restrict our discussions to this square domain D.

Proposition 3.2. D is positively invariant for the flow of the control system; i.e.,
if (p0, q0) ∈ D, then for any admissible control u defined over the interval [0,∞) the
solution (p(·), q(·)) to the corresponding dynamics with initial condition (p(0), q(0)) =
(p0, q0) exists for all times t ≥ 0 and lies in D, (p(t), q(t)) ∈ D.

Proof. The positive invariance of the region P = {(p, q) : 0 < p, 0 < q} for any
admissible control u directly follows from Proposition 3.1. The dynamics is clearly
pointing into D on the boundary segment {(p, q) ∈ D : p = p̄, 0 < q < q̄}, since for
p > q we always have ṗ < 0. For a constant control v, the isoclines for q̇ = 0 are given
by

(3.2) q = Ξv(p) =
bp

μ + Gv + dp
2
3

.

The functions Ξv are strictly increasing, Ξv(0) = 0, and at p̄ take the value

(3.3) Ξv(p̄) =
b

b + Gv
p̄.

In particular, the smallest value is given for v = a and Ξ0(p̄) = p̄. It thus follows
that on the boundary segment {(p, q) ∈ D : 0 < p < p̄, q = q̄} we have q̇ < 0 for all
controls. The point (p̄, q̄) is the equilibrium point for u = 0, and the dynamics points
into D for u = a at this point. Thus, regardless of the control value v, trajectories
can never leave the region D.

By increasing the value v of the control, the equilibrium can be shifted towards
the origin along the diagonal and finally be eliminated altogether. As a function of v
the equilibrium is the unique fixed point of the equation p = Ξv(p) in {p > 0} and is
given by

(3.4) p̄(v) = q̄(v) =

(
b− μ−Gv

d

) 3
2

provided b− μ > Gv, and this equilibrium (p̄(v), q̄(v)) still is globally asymptotically
stable. As b − μ ≤ Gv, the system no longer has an equilibrium point, and now all
trajectories converge to the origin as t → ∞ [5]. Thus, theoretically eradication of the
tumor was possible in this case under the unrealistic scenario of constant treatment
with an unlimited supply of inhibitors. Since this is the most desirable situation, for
our analysis of the optimal control problem we also assume that

(3.5) (A) Ga > b − μ > 0.

Figure 3.1 shows the phase portraits of the uncontrolled system on the left and for
u ≡ a on the right. In our figures we prefer to have the tumor volume as the vertical
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Fig. 3.1. Phase portraits for u = 0 and u = a = 75.

axis since this better visualizes the tumor reduction (respectively, increase). For
comparison the diagonal is included in these figures as a dashed-dotted line. It is not
difficult to extend all results of this paper to the case when the dynamics for u ≡ a
still has a positive equilibrium, but this will not be pursued here for reasons of space.

However, the domain D still contains initial conditions that give rise to degenerate
cases that we want to exclude. Recall that D+ = {(p, q) ∈ D : p > q}, D0 = {(p, q) ∈
D : p = q}, and D− = {(p, q) ∈ D : p < q}. Both of the trajectories for the constant
controls u = 0 and u = a cross the diagonal portion D0 transversally: For u = 0
trajectories cross from D+ into D−, while they cross in the opposite direction from
D− into D+ for u = a. Also, trajectories for u = 0 approach the stable equilibrium
(p̄, q̄) from within the region D−, while trajectories for u = a converge to the origin
as t → ∞ in the region D+. It follows from the dynamics for p, (2.5), that the p-
value of trajectories is always decreasing in D+ and always increasing in D−. As a
result, for some initial conditions (p0, q0, y0), with (p0, q0) ∈ D−, it is possible that
the (mathematically) optimal time T is T = 0. This situation arises when the amount
of available inhibitors simply is not sufficient to reach a point in the region D+ that
would have a lower p-value than p0. In such a case it is not possible to decrease the
tumor volume with the available amount of inhibitors. It is possible only to slow
down the tumor’s growth. Indeed, it is correct that the best way of doing this is to
give the full dose u = a until all inhibitors run out—this follows from the structure
of optimal controls to be shown later—but this is not the mathematically “optimal”
solution for problem [HPFH]. This one is simply to do nothing and take T = 0. Since
this introduces a number of degeneracies into the analysis, we make the following
definition.

Definition 3.3. We say an initial condition (p0, q0) ∈ D− is ill-posed if for any
admissible control it is not possible to reach a point (p, q) with p < p0. In this case
the optimal solution for the problem [HPFH] is given by T = 0. Otherwise (p0, q0) is
well-posed and the optimal time T will be positive.

It is clear that all initial conditions with (p0, q0) ∈ D+ ∪D0 are well-posed (since
p decreases in D+ and trajectories with u = a enter D+ from D0), and it is easily
decided whether an initial condition (p0, q0) ∈ D− is ill-posed. For our analysis of
optimal controls, however, we consider only well-posed initial conditions.

4. The maximum principle and preliminary analysis of optimal con-
trols. It follows from classical results that there exists an optimal solution to our
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problem [4]. First-order necessary conditions for optimality of a control u are given
by the Pontryagin maximum principle [18, 3, 4]: If u∗ is an optimal control defined
over an interval [0, T ] with corresponding trajectory (p∗, q∗, y∗)

T , then there exist a
constant λ0 ≥ 0 and an absolutely continuous covector λ : [0, T ] → (R3)∗ (which we
write as a row vector) such that (a) (λ0, λ(t)) 	= (0, 0) for all t ∈ [0, T ], (b) the adjoint
equations hold with transversality conditions

λ̇1 = ξλ1

(
ln

(
p∗(t)

q∗(t)

)
+ 1

)
+ λ2

(
2

3
d
q∗(t)

p
1
3∗ (t)

− b

)
, λ1(T ) = λ0,

(4.1)

λ̇2 = −ξλ1
p∗(t)

q∗(t)
+ λ2

(
μ + dp

2
3∗ (t) + Gu

)
, λ2(T ) = 0,

(4.2)

λ̇3 = 0, λ3(T ) =

{
0 if y(T ) < A,

free if y(T ) = A,

(4.3)

and (c) the optimal control u∗ minimizes the Hamiltonian H

(4.4) H = −λ1ξp ln

(
p

q

)
+ λ2

(
bp−

(
μ + dp

2
3

)
q −Guq

)
+ λ3u,

along (λ(t), p∗(t), q∗(t)) over the control set [0, a] with the minimum value given by 0.
We call a pair ((p, q, y), u) consisting of an admissible control u with corresponding

trajectory (p, q, y) an extremal (pair) if there exist multipliers (λ0, λ) such that the
conditions of the maximum principle are satisfied and the triple ((p, q, y), u, (λ0, λ))
is an extremal lift (to the cotangent bundle). Extremals with λ0 = 0 are called
abnormal, while those with a positive multiplier λ0 are called normal. In this case it
is possible to normalize λ0 = 1. The following lemmas summarize some elementary
properties of optimal controls and extremals for well-posed initial conditions.

Lemma 4.1. If u∗ is an optimal control with corresponding trajectory (p∗, q∗, y∗)
T ,

then at the final time p∗(T ) = q∗(T ) and y∗(T ) = A; i.e., all available inhibitors have
been used up.

Proof. Since the p-dynamics is Gompertzian, (2.5), the cancer volume is growing
for p < q and is shrinking for p > q. This implies that optimal trajectories can
terminate only at times where p∗(T ) = q∗(T ). For, if p∗(T ) < q∗(T ), then it would
simply have been better to stop earlier since p was increasing over some interval
(T − ε, T ]. (Recall that we are assuming that the initial condition is well-posed so
that the optimal final time T is positive.) On the other hand, if p∗(T ) > q∗(T ), then
we can always add another small interval (T, T + ε] with the control u = 0 without
violating any of the constraints and p will decrease along this interval if ε is small
enough. Thus at the final time necessarily p∗(T ) = q∗(T ). If now y(T ) < A, then we
can still add a small piece of a trajectory for u = a over some interval [0, ε]. Since
q̇ < 0 on the diagonal D0, the corresponding trajectory lies in D+, and thus the value
of p is decreasing along this trajectory contradicting the optimality of T .

Lemma 4.2. Extremals are normal. The multipliers λ1 and λ2 cannot vanish
simultaneously; λ2 has only simple zeros. The multiplier λ3 is constant and nonneg-
ative.

Proof. The multipliers λ1 and λ2 satisfy the homogeneous linear system (4.1) and
(4.2), and thus they vanish identically if they vanish at some time t. If λ0 = 0, then
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the nontriviality of (λ0, λ(t)) implies that the multiplier λ3, which is constant, is not
zero. The condition H ≡ 0 on the Hamiltonian therefore gives u ≡ 0; i.e., the initial
condition is ill-posed. Thus, without loss of generality we may assume that λ0 = 1
and hence λ1 and λ2 cannot vanish simultaneously. In particular, whenever λ2(t) = 0,
then λ̇2(t) 	= 0, and thus λ2 has only simple zeros.

For the final time T it follows from p∗(T ) = q∗(T ), the transversality condition
λ2(T ) = 0, and the condition H(T ) ≡ 0 that λ3u∗(T ) = 0. If λ3 < 0, then the
function Φ(t) = λ3 − λ2(t)Gq∗(t) will be negative on some interval (T − ε, T ], and
thus by the minimization condition (c) on the Hamiltonian the control must be given
by u∗(t) = a on this interval which is a contradiction. Hence λ3 ≥ 0.

Lemma 4.3. If λ3 = 0, then the corresponding optimal control is constant over
the interval [0, T ] and given by the control u ≡ a.

Proof. In this case the Hamiltonian function reduces to

(4.5) H = −λ1ξp ln

(
p

q

)
+ λ2

(
bp−

(
μ + dp

2
3

)
q −Guq

)
,

and thus the minimization condition (c) implies that

u∗(t) =

{
0 if λ2(t) < 0,
a if λ2(t) > 0.

Since λ2(T ) = 0 and λ̇2(T ) = −ξλ1(T )p∗(t)
q∗(t) = −ξ < 0, λ2 is positive on some interval

(τ, T ], and here the control is given by u∗(t) = a. Since p∗(T ) = q∗(T ), it follows
that the trajectory entirely lies in D− as long as the control is u ≡ a. But then λ2

cannot have another zero τ since otherwise H(τ) = −λ1(τ)ξp(τ) ln(p(τ)
q(τ) ) 	= 0. Thus

the control must be constant u ≡ a.
Except for this extremely degenerate case (the initial condition is such that with

giving the full dose we reach the diagonal exactly when all inhibitors have been ex-
hausted), we can, as we henceforth do, without loss of generality therefore assume
that λ3 is positive.

Lemma 4.4. If λ3 > 0, then optimal controls end with an interval (τ, T ] where
u∗ ≡ 0.

The function

(4.6) Φ(t) = λ3 − λ2(t)Gq∗(t),

which determines the structure of the optimal control u∗ through the minimization
property (c) on the Hamiltonian H, is called the switching function of the problem,
and optimal controls satisfy

(4.7) u∗(t) =

{
0 if Φ(t) > 0,
a if Φ(t) < 0.

A priori the control is not determined by the minimum condition at times when
Φ(t) = 0. If Φ(τ) = 0, but Φ̇(τ) 	= 0, then the control switches between u = 0 and
u = a depending on the sign of Φ̇(τ). On the other hand, if Φ(t) vanishes identically
on an open interval, then the minimization property in itself gives no information
about the control. However, in this case also all derivatives of Φ(t) must vanish, and
this may and typically does determine the control. Controls of this kind are called
singular, while we refer to the constant controls as bang controls. Optimal controls
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then need to be synthesized from these candidates through an analysis of the switching
function and its derivatives.

The computations of the derivatives of the switching function Φ can be expressed
concisely within the framework of geometric optimal control theory, and we therefore
now write the state as a 3-dimensional vector z = (z1, z2, z3)

T , with z1 = p, z2 = q,
and z3 = y. In vector notation the dynamics takes the form

(4.8) ż = f(z) + ug(z),

with

(4.9) f(z) =

⎛
⎜⎜⎝

−ξp ln
(

p
q

)
bp−

(
μ + dp

2
3

)
q

0

⎞
⎟⎟⎠

and

(4.10) g(z) =

⎛
⎝ 0

−Gq
1

⎞
⎠ .

The adjoint equation then simply becomes

(4.11) λ̇(t) = −λ(t) (Df(z(t)) + u∗(t)Dg(z(t))) ,

where Df and Dg denote the matrices of the partial derivatives of the vector fields
which are evaluated along z(t). The derivatives of the switching function can easily be
computed using the following well known result that can be verified by an elementary
direct calculation. Here 〈·, ·〉 denotes the standard inner product on R

3, i.e., for a
covector λ ∈ (R3)∗ and a vector z ∈ R

3, 〈λ, z〉 = λz.
Proposition 4.5. Let h be a continuously differentiable vector field, and define

(4.12) Ψ(t) = 〈λ(t), h(z(t))〉 .

Then the derivative of Ψ along a solution to the system equation (4.8) for control u
and a solution λ to the corresponding adjoint equation (4.11) is given by

(4.13) Ψ̇(t) = 〈λ(t), [f + ug, h]z(t)〉 ,

where

(4.14) [f, h](z) = Dh(z)f(z) −Df(z)h(z)

denotes the Lie bracket of the vector fields f and h.

5. Synthesis of optimal controlled trajectories. In this section we first give
an overview of the structure of optimal controlled trajectories, but the proofs will be
postponed to the remaining sections of the paper. We summarize the general structure
of optimal controls and trajectories in the following theorem.

Theorem 5.1. Given z̃ = (p̃, q̃, 0), with (p̃, q̃) ∈ D, optimal controls are at most
concatenations of the form 0asa0, with 0 denoting an arc along the constant control
u = 0, a denoting an arc along the constant control u = a, and s denoting an arc
along the singular curve S.
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Fig. 5.1. The regions I, II, III, and IV.

This result limits the possible concatenations in the sense that it provides an
upper bound. But for many initial conditions the concatenation structure is quite
shorter (pieces are missing), and there exists a unique extremal of this type which is
the optimal solution. However, there also are initial conditions for which there exists a
one-parameter family of extremals of this type, and in these cases the optimal control
needs to be computed numerically through minimizing a 1-dimensional function (see
section 8). Once a simple maximal concatenation structure such as the one given in
Theorem 5.1 has been determined, this is a straightforward argument.

Clearly, optimal trajectories lie in R
3, and at every point the actions depend

on the available amount of inhibitors. However, it is more illustrative to consider the
projections of trajectories into the (p, q)-plane,1 and it is convenient, and only a slight
abuse of terminology, not to distinguish in our language between the trajectories in
(p, q, y)-space and their projections onto the (p, q)-coordinates.

The anchor piece of the synthesis is an optimal singular arc. It will be shown in
section 6 that singular trajectories can lie only on a looplike curve S in (p, q)-space
where the vector fields f and the Lie bracket [f, g] are linearly dependent and that
there exists a unique arc Γ on S where the singular control is admissible, i.e., satisfies
the control constraints 0 ≤ u ≤ a. This curve S and the diagonal D0 = {(p, q) : p = q}
also form boundary curves between optimal bang-bang switchings in the order a0
and of the reverse order 0a, and the concatenation structure of optimal controls is
determined by the location of the initial condition relative to these curves. Denote
by S+ the region outside of the singular loop S and by S− the region inside this loop,
and define the following regions (see Figure 5.1):

I = D+ ∩ S+, II = D+ ∩ S−, III = D− ∩ S−, IV = D− ∩ S+.

In Figure 5.2 we indicate the structure of optimal controlled trajectories for a
representative collection of initial conditions and have highlighted one example as
a thick curve. (Pieces of trajectories corresponding to u = a are shown as dashed
curves, and pieces of u = 0 trajectories are shown as solid curves; pieces along the
singular arc follow the curve S.) The initial condition for the highlighted trajectory
lies in region II, and the optimal control is of the form as0: The control initially is

1In our graphs we prefer to have q as the horizontal variable and p along the vertical axis. Visually
this better corresponds to a decrease or increase in the primary cancer volume.
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Fig. 5.2. Synthesis of optimal controlled trajectories.

given by u = a until the singular arc Γ is reached; at this time the control switches to
the singular control and follows the admissible singular arc Γ until all inhibitors have
been exhausted; due to aftereffects the minimum value for the tumor volume then is
reached when, after termination of therapy, the system crosses the diagonal along the
trajectory for u = 0. This is the typical structure of optimal controlled trajectories for
initial conditions in II, but it depends on two facts: The overall amount of inhibitors is
large enough to reach the singular arc, but it is not so large that the singular control
would saturate along the singular arc at a specific point x∗

u (computed in section
6.2). If there are not enough inhibitors to reach Γ, the optimal control is simple
and is just of type a0, giving all inhibitors at maximum dosage from the beginning
until they become exhausted. If the amount of inhibitors is large enough so that the
singular control would saturate at the point x∗

u while following the singular arc, the
structure of optimal controls is more complex, and in this case controls can be of type
a0 or asa0. Typically, as the singular arc Γ is reached, now the control switches and
follows the singular arc for some time period, but in this case optimal trajectories
leave the singular arc before reaching x∗

u, and the remaining inhibitors are exhausted
along a full dose segment with u = a. But for trajectories that meet the singular
arc close to the saturation point x∗

u optimal controls do not switch to the singular
control but simply follow u = a until inhibitors are exhausted. The precise structure
of optimal trajectories that come close to the saturation point is rather difficult but
for a particular initial condition is easily resolved numerically.

For well-posed initial conditions in regions III and IV, optimal controlled trajec-
tories will eventually enter region II along a trajectory for u = a and then follow
the pattern described above. The specific form depends on the amount of inhibitors
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Fig. 5.3. An optimal as0 trajectory with corresponding control.

left over as the diagonal is crossed. For a typical initial condition, before crossing
the diagonal D0, the control will simply be constant given by u = a until region II
is reached. Only for some initial conditions with a low p-value and a relatively high
q-value can the control be u = 0 initially and then will switch to u = a. For some
points in IV optimal controls could in principle have the full concatenation structure
0asa0, but these are not of separate interest for the underlying problem. (Essentially,
following u = 0 the trajectory enters the part of region III where the control switches
to u = a and then ends with the pattern described for region II.)

For initial conditions in region I the most typical structure of optimal controls
is 0s0. Since p > q, the tumor is shrinking already, but as the system reaches the
singular arc, it is best to administer therapy according to the singular control until all
inhibitors become exhausted. As above, if the trajectory comes close to the saturation
point, this structure changes into 0sa0, and if the initial condition actually already is
close to this point, it may simply be a0 again.

A more precise description of all of these possibilities is given in section 8, where we
prove these results. Also, the diagrams shown here are generated using the parameter
values given in section 2 that are taken from [9], but the qualitative structure of the
solutions described here is robust with respect to parameter changes. Only if the
upper limit a on the dosage becomes too small will the singular arc disappear.

In Figure 5.3 we give one specific example of an optimal trajectory (on the left)
and its corresponding control (on the right) of the type as0. The initial condition is
given by (p̃, q̃) = (12000, 15000) in region III. The optimal control takes the maximal
value u = a for the short interval from 0 to t1 = 0.0905 when the trajectory reaches the
singular arc. At this point the control switches to the time-varying singular control
until all inhibitors are being exhausted at time t2 = 6.5579. Then, due to aftereffects,
the minimum value of the tumor volume is realized a short period later at the final
time T = 6.7221 when the corresponding u = 0 trajectory reaches the diagonal. Note
the extremely fast q-dynamics away from the singular arc. The optimal final value is
given by p∗(T ) = 8533.4. The optimal trajectory is shown as a solid curve in Figure
5.3, and the singular curve S and the diagonal D0 are shown as dotted curves. For
comparison we also show the a0 trajectory that corresponds to the trajectory which
applies all available inhibitors initially as a dashed curve. (Its initial segment agrees
with the optimal trajectory and is not marked separately.) This strategy leads to a
tumor reduction with value 8707.4 at time 4.1934.



1064 URSZULA LEDZEWICZ AND HEINZ SCHÄTTLER

6. Analysis of the singular arc. In this section we compute an explicit form
for the singular control and the corresponding singular curve S. We also show that
there exists a unique connected arc of S where the singular control is admissible, i.e.,
satisfies the control constraints. Furthermore, the strengthened Legendre–Clebsch
condition holds along S, and thus the singular arc is locally optimal.

6.1. Computation of the singular control. Using Proposition 4.5 we get for
the switching function Φ(t) = 〈λ(t), g(z(t))〉 that

(6.1) Φ̇(t) = 〈λ(t), [f, g]z(t)〉

and

(6.2) Φ̈(t) = 〈λ(t), [f + ug, [f, g]]z(t)〉 .

Direct calculations verify that

(6.3) [f, g](z) = Gp

⎛
⎝ ξ

−b
0

⎞
⎠

and

(6.4) [g, [f, g]](z) = −G2bp

⎛
⎝ 0

1
0

⎞
⎠ .

If the switching function Φ(t) = λ3 − λ2(t)Gq∗(t) vanishes at some time t, then λ2(t)
is positive since λ3 > 0, and thus we have

(6.5) 〈λ(t), [g, [f, g]]z(t)〉 = −λ2(t)G
2dp∗(t) < 0;

i.e., the so-called strengthened Legendre–Clebsch condition [11] is satisfied. Hence,
and provided it is admissible, the singular control is of order 1, locally optimal, and
given by

(6.6) usin(t) = −〈λ(t), [f, [f, g]]z(t)〉
〈λ(t), [g, [f, g]]z(t)〉 .

Another direct computation verifies that

(6.7) [f, [f, g]](z) = Gp

⎛
⎜⎜⎝

ξ2 + ξbpq

ξb ln
(

p
q

)
+ ξ

(
2
3d

q∗(t)
3
√

p∗(t)
− b

)
−
(
μ + dp

2
3∗ (t)

)
b

0

⎞
⎟⎟⎠ .

The vector fields g, [f, g], and [g, [f, g]] are everywhere linearly independent, and thus
[f, [f, g]] can be expressed as a linear combination in this basis. In fact,

(6.8) [f, [f, g]] =

(
ξ + b

p

q

)
[f, g] − ψ[g, [f, g]],

with

(6.9) ψ = ψ(p, q) =
1

G

(
ξ ln

(
p

q

)
+ b

p

q
+

2

3
ξ
d

b

q

p
1
3

−
(
μ + dp

2
3

))
.
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Along a singular arc we have that

(6.10) Φ̇(t) = 〈λ(t), [f, g](z(t))〉 ≡ 0,

and therefore

〈λ(t), [f, [f, g]](z(t))〉 = −ψ(z(t)) 〈λ(t), [g, [f, g]](z(t))〉 .

Since 〈λ(t), [g, [f, g]](z(t))〉 	= 0, the singular control defined by (6.6) is simply given
by the function ψ in feedback form, more precisely

(6.11) usin(t) = −〈λ(t), [f, [f, g]]z(t)〉
〈λ(t), [g, [f, g]]z(t)〉 = ψ(p(t), q(t)).

Summarizing, we have so far the following.
Proposition 6.1. Let (z∗, u∗) be an extremal pair. If the control u∗ is singular on

an open interval (α, β), then u∗ is of order 1, and the strengthened Legendre–Clebsch
condition is satisfied. The singular control is given in feedback form as

usin(t) = ψ(p∗(t), q∗(t))

=
1

G

(
ξ ln

(
p∗(t)

q∗ (t)

)
+ b

p∗(t)

q∗ (t)
+

2

3
ξ
d

b

q∗(t)

p
1
3∗ (t)

−
(
μ + dp

2
3∗ (t)

))
.(6.12)

But note that the singular control is admissible only if this value lies in the interval
[0, a]. Before addressing this issue, we first compute the singular curve itself.

6.2. Computation of the singular curve. For a trajectory to be an extremal,
the singular curve also needs to satisfy the extra requirement that H ≡ 0 or, equiva-
lently,

(6.13) 〈λ(t), f(z(t))〉 ≡ 0.

Hence, along a singular arc, λ(t) vanishes against the vector fields f , g, and [f, g].
Since λ(t) 	= 0, these vector fields must be linearly dependent. But g is always linearly
independent of f and [f, g], and thus the singular curve is precisely the locus where
f and [f, g] are linearly dependent. Both vector fields do not depend on y and have
a y-coordinate equal to 0. With slight abuse of notation we can therefore also view
them as vector fields on (p, q)-space and define the singular curve S as

(6.14) S = {(p, q) : f(p, q) ∧ [f, g](p, q) = 0},

where

(6.15) f(p, q) ∧ [f, g](p, q) =

∣∣∣∣∣∣∣∣
−ξp ln

(
p
q

)
ξ

bp−
(
μ + dp

2
3

)
q −b

∣∣∣∣∣∣∣∣
.

Thus the singular curve is given by the solutions of the equation

(6.16) μ + dp
2
3 = b

p

q

(
1 − ln

(
p

q

))
.
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The geometry of the singular curve becomes clear if we introduce a projective coor-
dinate, i.e., make a blowup in the variables of the form

(6.17) p = xq, x > 0.

The quotient q
p is proportional to the endothelial density which is used to replace the

carrying capacity of the vasculature as a variable in some models like, for example,
in [7]. As it turns out, the singular curve and its corresponding singular control can
be expressed solely in terms of the variable x introduced here. This fact confirms
mathematically the importance of this quantity. However, for the overall analysis,
and in particular in view of a ready interpretation of the results, we preferred to keep
the original variables p and q and use x only in the analysis of the singular arc. In
these variables (6.16) simplifies to

(6.18) μ + dp
2
3 = bx (1 − lnx)

and can be rewritten in the form

(6.19) p2 + ϕ(x)3 = 0,

with

(6.20) ϕ(x) =
bx(lnx− 1) + μ

d
.

The function ϕ is strictly convex with a minimum at x = 1 and minimum value μ−b
d .

In particular, if μ ≥ b, then this equation has no positive solutions, and thus no
admissible singular arc exists. The case μ < b, which we assumed in (3.5), is the
medically relevant case. For μ = 0 the zeros of ϕ are given by x∗

1 = 0 and x∗
2 = e, and

ϕ is negative on the interval (0, e). In general, for μ > 0, we have ϕ(0) = μ
d = ϕ(e),

and thus now the zeros x∗
1 and x∗

2 satisfy 0 < x∗
1 < 1 < x∗

2 < e. We thus have the
following.

Proposition 6.2. The singular curve S entirely lies in the sector {(p, q) : x∗
1q <

p < x∗
2q}, where x∗

1 and x∗
2 are the unique zeros of the equation ϕ(x) = 0 and satisfy

0 ≤ x∗
1 < 1 < x∗

2 ≤ e. In the variables (p, x), with x = p
q , the singular curve can be

parameterized in the form

(6.21) p2 =

(
bx(1 − lnx) − μ

d

)3

for x∗
1 < x < x∗

2.

Proposition 6.3. Along the singular arc the singular control can be expressed
solely as a function of x in the form

(6.22) Ψ(x) =
1

G

[(
1

3
ξ + bx

)
lnx +

2

3
ξ
(
1 − μ

bx

)]
.

There exists exactly one connected arc on the singular curve S along which the control
is admissible, i.e., satisfies the bounds 0 ≤ Ψ ≤ a. This arc is defined over an interval
[x∗

� , x
∗
u], where x∗

� and x∗
u are the unique solutions to the equations Ψ(x∗

� ) = 0 and
Ψ(x∗

u) = a, respectively, and these values satisfy x∗
1 < x∗

� < x∗
u < x∗

2.
Figure 6.1 on the left gives a plot of the singular curve for the parameter values

from [9] specified earlier and μ = 0.02 and shows the admissible portion of the petallike
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Fig. 6.1. The singular curve and its admissible part.

singular curve S for a = 75 marked as a solid curve on the right. The qualitative
structure shown in Figure 6.1 is generally valid with the admissible portion shrinking
for smaller values a.

Proof. In the variables p and x the singular control is given by

(6.23) usin(t) =
1

G

(
ξ lnx(t) + bx(t) +

2

3
ξ
dp(t)

2
3

bx(t)
−
(
μ + dp(t)

2
3

))
.

But along the singular arc we have p
2
3 = −ϕ(x), and thus we obtain the singular

control as a feedback function of x alone, usin(t) = Ψ(x(t)), namely,

Ψ(x) =
1

G

(
ξ lnx + bx +

2

3
ξ
bx(1 − lnx) − μ

bx
− bx (1 − lnx)

)

=
1

G

[(
1

3
ξ + bx

)
lnx +

2

3
ξ
(
1 − μ

bx

)]
.

Note that limx↘0 Ψ(x) = −∞ and limx→∞ Ψ(x) = +∞. Now

Ψ′(x) =
1

G

[
b (lnx + 1) +

1

3
ξ

(
1

x
+ 2

μ

bx2

)]
,(6.24)

Ψ′′(x) =
1

Gx3

(
bx2 − 1

3
ξx− 4

3
ξ
μ

b

)
,

and the second derivative has a unique positive zero at

x∗ =
1

6

ξ

b

(
1 +

√
1 + 48

μ

ξ

)
.

It follows that Ψ is strictly concave for 0 < x < x∗ and strictly convex for x > x∗.
If the function Ψ has no stationary points, then Ψ is strictly increasing, and thus, as
claimed, there exists a unique interval [x∗

� , x
∗
u] when Ψ takes values in [0, a], and the

limits are the unique solutions of the equations Ψ(x) = 0 and Ψ(x) = a, respectively.
The same holds if Ψ has a unique stationary point at x∗. In the remaining case, it
follows from the convexity properties that Ψ has a unique local maximum at x̃1 < x∗
and a unique local minimum at x̃2 > x∗. It suffices to show that Ψ is negative at
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its local maximum. This, as before, implies that Ψ is strictly increasing when it is
positive. Suppose now that Ψ′(x̃) = 0. Then

−b ln x̃ = b +
1

3
ξ

(
1

x̃
+ 2

μ

bx̃2

)
> 0,

and thus

Ψ(x̃) =
1

G

[(
1

3
ξ + bx̃

)(
−1 − 1

3

ξ

b

(
1

x̃
+ 2

μ

bx̃2

))
+

2

3
ξ
(
1 − μ

bx̃

)]

=
1

G

[
−bx̃− 1

9

ξ2

b

(
1

x̃
+ 2

μ

bx̃2

)
− 4

3

ξμ

bx̃

]
< 0.

Hence Ψ is negative at any stationary point.

7. Analysis of bang-bang junctions. Optimal controls are concatenations of
the singular control with bang-bang structures, and in this section we analyze possible
switchings among bang-bang pieces of an optimal trajectory. We start with a strictly
local analysis of switchings that establishes the regions in (p, q)-space where switchings
from u = a to u = 0 or from u = 0 to u = a are possible. We then proceed to analyze
extremal bang-bang concatenation structures over the full interval. These results will
then be used in section 8 to determine the overall concatenation structures of optimal
controls.

The singular curve computed in section 6.2 also is a boundary curve between
optimal switchings in the order a0 and of the reverse order 0a. Recall that I = D+∩S+,
II = D+ ∩ S−, III = D− ∩ S−, and IV = D− ∩ S+.

Proposition 7.1. Along optimal trajectories there are no switchings from u = a
to u = 0 at points (p̃, q̃) in regions I and III, and there are no switchings from u = 0
to u = a at points (p̃, q̃) in regions II and IV.

Proof. It follows from (4.7) that the derivative of the switching function must
be nonpositive at any time τ where the control switches from u = 0 to u = a and
nonnegative at every switching from u = a to u = 0. Furthermore, since H ≡ 0 along
extremal lifts, at any switching τ , the adjoint variable λ(τ) vanishes against both
f(z(τ)) and g(z(τ)). Except for the points on the diagonal D0 = {(p, q) : p = q},
the vector fields f and g and the coordinate vector field ∂

∂y = (0, 0, 1)T are linearly

independent, and thus the Lie bracket [f, g] can be written as a linear combination of
these vector fields in the form

[f, g](z) = α(z)f(z) + β(z)g(z) + γ(z)
∂

∂y
;

i.e.,

Gp

⎛
⎝ ξ

−b
0

⎞
⎠ = α(z)

⎛
⎜⎜⎝

−ξp ln
(

p
q

)
bp−

(
μ + dp

2
3

)
q

0

⎞
⎟⎟⎠ + β(z)

⎛
⎝ 0

−Gq
1

⎞
⎠ + γ(z)

⎛
⎝ 0

0
1

⎞
⎠ .

Thus we have

α(z) = − G

ln
(

p
q

) , β(z) =
b
(

p
q

)(
ln
(

p
q

)
− 1

)
+
(
μ + dp

2
3

)
ln
(

p
q

) ,
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and

(7.1) γ(z) = −β(z).

At a switching time τ ,

Φ̇(τ) = 〈λ(τ), [f, g](z(τ))〉
= α(z) 〈λ(τ), f(z(τ))〉 + β(z) 〈λ(τ), g(z(τ))〉 − β(z)λ3

= −β(z)λ3,

and by Lemma 4.3 we may assume that λ3 is positive. Thus the sign of Φ̇(τ) is the
opposite of the sign of β. The denominator of β is positive in D+ and negative in D−.
The zero set of the numerator of β is exactly the locus where the vector fields f and
[f, g] are linearly dependent, i.e., the singular curve S (see (6.16)). We have labeled
the regions so that the numerator is positive in S+ and negative in S− (recall that
b > μ). Hence Φ̇(τ) is negative in regions I and III and positive in regions II and IV.
This proves the proposition.

We now proceed to the analysis of bang-bang controls over the full interval. The
admissible portion of the singular arc does not meet D−, and in D− optimal controls
will be bang-bang. We therefore begin with this analysis and assume as given a well-
posed initial condition z̃ = (p̃, q̃, ỹ), with (p̃, q̃) ∈ D−. We first establish that optimal
trajectories that start in D− will enter D+ but then cannot return to D− any more.

Proposition 7.2. Suppose (p∗(·), q∗(·)) is an optimal trajectory defined over the
interval [0, T ] with a well-posed initial condition (p̃, q̃) ∈ D−. Then there exists a time
τ ∈ (0, T ) so that the trajectory lies in D− for t ∈ [0, τ), crosses into D+ at time τ ,
and remains in D+ for times t ∈ (τ, T ). Over the interval [0, τ) the control either is
constant given by u ≡ a or is of the form 0a. In the latter case the junction must lie
in the set N− = {(p, q) ∈ D− : bp < (μ + dp

2
3 )q}.

Proof. Recall once more that we consider only initial conditions that are well-
posed; i.e., the corresponding optimal trajectory does cross over into D+. Define τ as
the (possibly) first time when the trajectory lies on the diagonal D0. We first show
that τ cannot be a switching time. For, if this were the case, then, since p(τ) = q(τ),

(7.2) H(τ) = λ2(τ)p(τ)
(
b−

(
μ + dp(τ)

2
3

))
= 0.

But on D0 we have b > μ + dp(τ)
2
3 , and thus λ2(τ) = 0. Hence the switching

function at time τ is positive: Φ(τ) = λ3 > 0. But then the control must be u = 0
in a neighborhood of τ , and the trajectory crosses from D+ into D−, which is a
contradiction.

Of the bang controls only u = a steers the system from D− into D+, and nothing
more needs to be shown about the interval [0, τ) if the control is constant and given
by u = a on this interval. If not, there exists a maximal interval (α, β), with 0 < α <
τ < β < T , so that the switching function is negative for t ∈ (α, β) and has zeros at
α and β: Φ(α) = Φ(β) = 0. The function Φ has a minimum over the interval [α, β]
at some time σ ∈ (α, β), and by (6.1) and (6.3) we have

(7.3) Φ̇(σ) = Gp(σ) (ξλ1(σ) − bλ2(σ)) = 0.

Hence λ1(σ) and λ2(σ) have the same sign. But λ2 is positive along trajectories for
u = a since Φ(t) = λ3−λ2(t)Gq(t) < 0 and λ3 > 0. Hence λ1(σ) > 0. Since there is a
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junction at time α, there also exists an interval (α− ε, α) where the control is u = 0,
and on this interval we have

(7.4) H(t) = −λ1(t)ξp(t) ln

(
p(t)

q(t)

)
+ λ2(t)

(
bp(t) −

(
μ + dp(t)

2
3

)
q(t)

)
= 0,

while λ2 is still positive for ε small. If we have

(7.5) bp(α) > (μ + dp(α)
2
3 )q(α)

at the junction, then, by (7.4), λ1 must be negative on this interval and also λ1(α) < 0.
Hence there exists a last zero for λ1 in the interval (α, σ), say, λ1(ρ) = 0. At this zero
the adjoint equation (4.2) reads

(7.6) λ̇1(ρ) = λ2(ρ)

(
2

3
d

q(ρ)
3
√
p(ρ)

− b

)
.

The curve N0 = {(p, q) : bp = (μ + dp
2
3 )q} is the q̇-nullcline for u = 0, and since at

the points on the q̇-nullcline we have

(7.7) f(z) =

⎛
⎜⎝ −ξp ln

(
p
q

)
0
0

⎞
⎟⎠

with the first coordinate positive in D−, corresponding trajectories cross N0 from
N− = {(p, q) : bp < (μ + dp

2
3 )q} into N+ = {(p, q) : bp > (μ + dp

2
3 )q} (Figure 7.1).

Because of the extra control term −Gqa in the vector field g, this also holds for
trajectories corresponding to the control u = a. Hence, if the junction at time α
satisfies (7.5), then so does the arc forward in time; i.e., for all t ∈ (α, σ) we have

(7.8) q(t) <
bp(t)

μ + dp(t)
2
3

.
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Hence

(7.9)
2

3
d

q(ρ)
3
√
p(ρ)

− b <
2

3
d

bp(ρ)
2
3

μ + dp(ρ)
2
3

− b =
2

3
b

dp(ρ)
2
3

μ + dp(ρ)
2
3

− b < −1

3
b < 0.

Since the multiplier λ2 is positive along u = a, we therefore have λ̇1(ρ) < 0, which is a
contradiction. Thus no 0a-junction can lie in the interior of N+. The same reasoning
also precludes that 0a-junctions would lie on the q̇-nullcline for u = 0, i.e., on N0. In
this case it follows that λ1(α) = 0 and λ̇1(α) < 0, and thus again there still exists a
last zero of λ1 in the interval (α, σ) where the same contradiction arises. Thus, any
possible 0a-junction in D− must lie in N−.

We now show that if there is a junction at some time α, then the control must
be constant u = 0 on the initial interval [0, α). Since trajectories for u = 0 cross N0

from N− into N+, it follows that, as long as the control u = 0 is used for t < α,
the trajectory lies in N−. Since this trajectory also necessarily lies in D− we have
p(t) < q(t). But then the identity

(7.10) H(t) = −λ1(t)ξp(t) ln

(
p(t)

q(t)

)
+ λ2(t)

(
bp(t) −

(
μ + dp(t)

2
3

)
q(t)

)
= 0

implies that neither λ1 nor λ2 can have any zeros (otherwise they would need to
vanish simultaneously, contradicting Lemma 4.2). Hence λ2 is positive, and λ1 must
be negative as long as the control is u = 0. This precludes any more switchings. For,
if there is another switching 0 < θ < α, then there also needs to be another zero for
the derivative of the switching function in (θ, α), and at this derivative λ1 and λ2

must have the same sign.
Thus, if (p̃, q̃) ∈ D− is a well-posed initial condition, then there exists a first time

τ at which the trajectory crosses from D− into D+ and the control over [0, τ) is either
constant and given by u ≡ a or it has exactly one switching from 0 to a with the
junction in N−. It still remains to show that the trajectory cannot return from D+

into D− for times t > τ , i.e., that (p(t), q(t)) lies in D+ for t ∈ (τ, T ). (It follows from
Lemma 4.1 that the end point lies on D0.)

If the trajectory were to return to D−, then there would exist another time κ > β
where the trajectory again would cross D0 with control u = 0 in a neighborhood of
κ. Now (7.10) implies that λ2(κ) = 0, and thus the adjoint equation for λ2 gives
λ̇2(κ) = −ξλ1(κ). Since λ1 and λ2 cannot vanish simultaneously, we have λ1(κ) 	= 0,
and λ2 changes sign at τ . If λ1(κ) > 0, then λ2 is negative for t > τ , t near τ .
However, after crossing into D−, trajectories for u = 0 entirely lie in D− and do
not cross back into D+. Consequently it follows from (7.10) that λ2 cannot have
another zero along an u = 0 arc. (In D− the expression λ1ξp ln(pq ) can vanish only if

λ1 = 0, and this precludes λ2 from having a zero.) But then the switching function
Φ(t) = λ3 − λ2(t)Gq remains positive, and so there cannot be another switching in
the control. But this structure clearly is not optimal since the value for p increases
in D−, which is a contradiction. If λ1(κ) < 0, we are back in the situation considered
above: If all inhibitors have not been used up, there needs to exist another switching
to u = a; but the entire forward orbit of the u = 0 trajectory lies in N+, and therefore
this switching would lie in N+, violating the earlier statement.

This proposition implies that, for well-posed initial conditions (p̃, q̃, 0), with (p̃, q̃) ∈
N+, the optimal control is given in feedback form by u ≡ a until the trajectory crosses
over into D+ at time τ . The further structure of the optimal control depends on the
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amount of inhibitors y(τ) that are still available at this time. If this amount is too
small to reach the singular arc, then, since only junctions in the order a0 are optimal
in region II = D+∩S−, the optimal control is simply given by u = a until all inhibitors
are exhausted and then follows u = 0 until the trajectory terminates on the diagonal
D0. (If the control would switch prior to the time when all inhibitors are exhausted,
by Proposition 7.1 it cannot switch back to the control u = a in region II and thus
would reach the diagonal with inhibitors still available, contradicting Lemma 4.1.)
Hence, if enough inhibitors are available for the trajectory to reach the singular curve
S, then the trajectory will follow u = a in region II.

We now consider the further structure of optimal controls for segments of the
trajectory that lie in D+. We first show that segments corresponding to the control
u = 0 can lie only at the beginning or at the end of the interval [0, T ].

Proposition 7.3. Let (α, β) be a maximal open interval where the optimal con-
trol is given by u ≡ 0 with corresponding trajectory (p∗, q∗) lying in D+. Then α and
β cannot both be switching times. If α is a switching time, then β = T , the final time,
and if β is a switching time, then α = 0, the initial time.

Proof. As before, on the interval (α, β), (7.10) holds, and on D+ we have

ξp ln(pq ) > 0 and bp − (μ + dp
2
3 )q > 0. As above, in this case neither λ1 nor λ2

can vanish, and therefore λ1 and λ2 have the same sign over (α, β). Since λ2 is posi-
tive at switching times, it follows that both λ1 and λ2 are positive over [α, β] if at least
one of the end points is a switching time. Along u = 0 the derivatives of the switching
function are given by Φ̇(t) = 〈λ(t), [f, g](z(t))〉 and Φ̈(t) = 〈λ(t), [f, [f, g]](z(t))〉. If
there exists a time τ ∈ (α, β) where Φ̇(τ) = 0, then it follows from (6.3) and (6.8)
that

Φ̈(τ) =

(
ξ + b

p(τ)

q(τ)

)
〈λ(τ), [f, g](z(τ))〉 − ψ(p(τ), q(τ)) 〈λ(τ), [g, [f, g]](z(τ))〉

=

(
ξ + b

p(τ)

q(τ)

)
Φ̇(τ) − ψ(p(τ), q(τ)) 〈λ(τ), [g, [f, g]](z(τ))〉

= ψ(p(τ), q(τ))bG2p(τ)λ2(τ) > 0.(7.11)

Here we use the fact that ψ is positive in D+.
Suppose α is a switching time. Then there exists an ε > 0 so that Φ̇ is positive

in (α, α + ε). (Since the control is u = 0, we have Φ̇(τ) ≥ 0, and even if Φ̇(α) = 0,
then this is implied by Φ̈(α) > 0.) Thus, if Φ̇ has zeros in (α, β), then there exists
a smallest one; call it τ . But then Φ̇(t) > 0 on the interval (α, τ), and so Φ cannot
have a local minimum at τ , contradicting Φ̈(τ) > 0. Hence Φ is strictly increasing
over (α, β) as long as the control u = 0 is used, and there cannot be another zero at
β. Similarly, if β is a switching time, then Φ is strictly decreasing over (α, β) as long
as the control u = 0 is used, and again there cannot exist a previous zero at α.

Proposition 7.4. Suppose (p∗, q∗) is an optimal trajectory corresponding to the
constant control u = a over some open interval (α, β) with switching times at α and
β. Then (p(α), q(α)) /∈ II and (p(β), q(β)) ∈ II. Furthermore, there exists a time
τ ∈ (α, β) where ψ(p(t), q(t)) ≥ a.

Proof. The statements about the junction points follow from Proposition 7.1.
Along u = a the switching function is negative over (α, β) and has a minimum at
some time τ ∈ (α, β) where Φ̇(τ) = 0 and Φ̈(τ) ≥ 0; the derivatives of the switching
function are now given by Φ̇(t) = 〈λ(t), [f, g](z(t))〉 and

Φ̈(t) = 〈λ(t), [f + ag, [f, g]](z(t))〉 .
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As above, it follows from (6.3) and (6.8) that

Φ̈(τ) =

(
ξ + b

p(τ)

q(τ)

)
〈λ(τ), [f, g](z(τ))〉 + {a− ψ(p(τ), q(τ))} 〈λ(τ), [g, [f, g]](z(τ))〉

=

(
ξ + b

p(τ)

q(τ)

)
Φ̇(τ) + {a− ψ(p(τ), q(τ))} 〈λ(τ), [g, [f, g]](z(τ))〉

= {ψ(p(τ), q(τ)) − a} bG2p(τ)λ2(τ).

(7.12)

Since Φ(τ) = λ3 − λ2(τ)Gaq(τ) < 0, we have λ2(τ) > 0, and thus we must have
ψ(p(τ), q(τ)) ≥ a. This proves the result.

8. Synthesis of optimal controls. We now put together the results, consider
concatenations between singular and bang arcs, and prove the results of section 5. We
start with a strictly local analysis of singular junctions analogous to Proposition 7.1
for bang-bang junctions and show that all possible concatenations of bang controls
with the singular arc are extremal. This classical result is included for the sake of
completeness and is a direct consequence of the fact that the strengthened Legendre–
Clebsch condition is satisfied. We then show that extremals which contain a saturating
arc are not optimal and proceed to the analysis of the possible concatenations of bang
and singular arcs.

Proposition 8.1. Let I be an open interval on which the optimal control u∗ is
singular and takes values in the interior of the control set. Then concatenations of
both the forms bs and sb, where b stands for any of the two bang controls u = 0 or
u = a, are extremal along I.

Proof. Recall that, for any control u that is continuous from the left (−) or right
(+), the second derivative of the switching function is given by

Φ̈(t±) = 〈λ(t), [f, [f, g]](z(t))〉 + u(t±) 〈λ(t), [g, [f, g]](z(t))〉 ,

and it vanishes identically on I along the singular control. Since the strengthened
Legendre–Clebsch condition is satisfied, we have 〈λ(t), [g, [f, g]](z(t))〉 < 0. By as-
sumption the singular control takes values in the interior of the control set [0, a], and
thus 〈λ(t), [f, [f, g]](z(t))〉 > 0. Hence, for u = 0 we get Φ̈(t) > 0, and for u = a we
have Φ̈(t) < 0. These signs are consistent with entry and exit from the singular arc
for each control; i.e., for example, if u = 0 on an interval (τ − ε, τ), then Φ is positive
over this interval, consistent with the choice u = 0 as minimizing control.

Thus, as long as the singular control has not saturated, it is possible to jump onto
or off the singular arc with the constant controls u = 0 or u = a at any point without
violating the conditions of the maximum principle locally. Naturally, optimality over
longer time intervals is not guaranteed and still needs to be analyzed. As an example,
it follows from Proposition 7.3 that the singular arc can be left with the control u = 0
only when all inhibitors have been exhausted. On the other hand, trajectories for
u = a can (and sometimes must) leave the singular arc before all inhibitors have been
exhausted. This follows from the result below. Recall that x∗

u is the point introduced
in Proposition 6.3 where the singular control saturates at the upper control value a.

Proposition 8.2. At the saturation point x∗
u on the singular arc where the

singular control saturates at the upper value u = a, it is not optimal to continue the
control with u = a. Thus optimal trajectories need to leave the singular arc before
saturation.
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This result may seem somewhat counterintuitive, but this is indeed the typical
behavior at saturation in low dimensions (see, for example, [17] or [2]).

Proof. Consider the trajectory that follows the singular arc and at the saturation
time τ continues with the control u = a. In general, we have

Φ̈(t) =

(
ξ + b

p(t)

q(t)

)
Φ̇(t) + (u(t) − ψ(p(t), q(t))) 〈λ(t), [g, [f, g]](z(t))〉 .

Along the singular arc Φ̇(τ) = 0 and at the saturation point we also have Φ̈(τ) = 0
for the control u = a since ψ = a. Hence, along u = a we get from the right that

Φ(3)(τ+) = −
(

d

dt |t=τ
ψ(p(t), q(t))

)
〈λ(t), [g, [f, g]](z(t))〉(8.1)

=

(
d

dt |t=τ
ψ(p(t), q(t))

)
bG2λ2(τ)p(τ).(8.2)

Recall that ψ(p(t), q(t)) = Ψ(x(t)), with x = p
q and Ψ defined in (6.22) in Proposition

6.3. We thus have

(8.3)
d

dt |t=τ
ψ(p(t), q(t)) = Ψ′(x∗

u)ẋ(τ).

It follows from the proof of Proposition 6.3 that Ψ′(x∗
u) > 0, and in general we have

ẋ =
ṗq − pq̇

q2
= −ξx lnx− bx2 + (μ + dp

2
3 )x + Gux.

Substituting (μ + dp
2
3 ) = bx(1 − lnx) along the singular arc (cf. (6.18)), we get

ẋ = x (Gu− (ξ + bx) lnx) .

But at the saturation point we also have

Gu(τ) = Ga =

(
1

3
ξ + bx(τ)

)
lnx(τ) +

2

3
ξ

(
1 − μ

bx(τ)

)
,

and thus

ẋ(τ) =
2

3
ξ
(
x(τ) (1 − lnx(τ)) − μ

b

)
=

2

3

ξ

b
dp(τ)

2
3 > 0.

Hence

(8.4) Φ(3)(τ+) > 0,

and Φ is positive for t > τ , t near τ , contradicting the minimization property for
u = a.

Thus optimal trajectories cannot continue with the saturated control u = a after
the saturation point but instead must leave the singular arc prior to saturating. The
analogous computation with u = 0 for t > τ shows that we can switch to u =
0 at saturation, but by Proposition 7.3 this is optimal only if all inhibitors have
been exhausted. In general, if inhibitors are available to go beyond the saturation
point, optimal trajectories must leave the singular arc before saturation occurs. When
precisely this happens depends on the amount of inhibitors left. For example, it is
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clear that if z̃ = (p̃, q̃, ỹ) is a point with (p̃, q̃) ∈ S before saturation for which A − ỹ
is small, then it is not optimal to leave the singular arc simply because there are not
enough inhibitors left so that the system could reach the region II = D+ ∩ S−, where
a switching from u = a to u = 0 again is optimal. In this case optimal trajectories
follow the singular arc until inhibitors are exhausted. However, if enough inhibitors
are available so that the singular arc would lose admissibility before they all are used
up, then indeed by leaving the singular arc earlier trajectories can enter region II,
and this will be the optimal strategy. But now the argument needs to become global.
Since by now we have sufficiently reduced the possibilities in the structures of optimal
controls and trajectories, we can reduce this problem to a 1-dimensional optimization
problem that can easily be solved numerically. Based on our previous analysis of
the structure of extremals, we now determine the optimal synthesis on D. We not
only establish the qualitative structure claimed in Theorem 5.1 but also show how to
compute the optimal control for a given initial condition z̃ = (p̃, q̃, 0).

We will prove that, except for some initial conditions (p̃, q̃) in regions III and IV
(which are less relevant for the underlying problem), our local analysis above only
allows for at most a one-parameter family of extremals Γε(s) = (pε(s), qε(s), yε(s)),
0 ≤ s ≤ T (ε), with the parameter ε ranging over a compact interval I = [0, θ]. The
corresponding value of the objective is given by υ(ε), υ(ε) = pε(T (ε)), and it will be
clear from the definition of the family Γε that the value υ(ε) depends continuously on
ε. Thus, for every initial condition there exists an optimal control that is determined
by numerical minimization of υ(ε) over [0, θ]. However, the structure of this one-
parameter family of extremals depends on the location of (p̃, q̃), and we need to
distinguish three cases.

Case 1. We start with an initial condition (p̃, q̃) in region I and will show that
in this case optimal controls at most have the form 0sa0 (possibly with the initial 0s
sequence absent). Let ς+ denote the reference trajectory that starts at z̃ = (p̃, q̃, 0),
uses the control u = 0 until the singular arc is reached at some time τ (the existence of
such a time is clear for initial conditions of this type), and then follows the singular arc
for time σ until either all available inhibitors have been exhausted or the saturation
point is reached. We now use the time ε along this trajectory as a parameter and
construct the family Γε over the compact parameter interval [0, θ], with θ = τ + σ as
follows: The trajectory Γε(·) agrees with the reference trajectory ς+ up to time ε and
switches at time ε to the control u = a, which will then be followed until all remaining
inhibitors have been exhausted, and then the control still is u = 0 until the trajectory
terminates at time T as the diagonal is reached.

This family indeed contains all possible extremals starting at initial condition z̃:
Initially the control can be only u = 0 or u = a. If the control is u = a, then it follows
from the phase portrait for u = a that this trajectory does not meet the admissible
portion of the singular curve. Since any possible junction will lie in D+, it follows
from Proposition 7.3 that the control can switch only to u = 0 as all inhibitors have
been exhausted. At this point the optimal control then is still given by u = 0 until
the diagonal D0 is reached at time T (0) and the trajectory is terminated. This is
the trajectory Γ0(·) in our family. It actually follows from Proposition 7.1 that this
trajectory would not be an extremal if the switching were to lie in region I, and in this
case this trajectory could be excluded a priori. However, even if this is the case, for
simplicity of argument we retain this curve anyway. Similarly, if initially the control
is u = 0 on [0, ε], with ε ≤ τ , and then switches to u = a, the same reasoning applies,
and the structure of the corresponding control is simply 0a0. For ε > τ , the trajectory
Γε(·) now follows the control u = 0 until time τ and then stays on the singular arc
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Fig. 8.1. Parameterized extremals for an initial condition in region I without saturation.

until time ε, at which time it leaves the singular arc to use u = a until all inhibitors
are being exhausted. The remaining time along the a trajectory is given by

(8.5) η(ε) =
1

a

(
A−

∫ ε

τ

ψ(pε(s), qε(s))ds

)
,

with η(τ + θ) = 0 if the inhibitors get exhausted along the singular arc. If the
singular control saturates, we know that the trajectory Γθ(·) is no longer optimal and
therefore can terminate the construction of the one-parameter family of extremals
with the trajectory that switches to u = a at saturation. This simply provides us
with a compact parameter interval, but in this case the minimum will be attained at
a parameter ε < θ. It follows from our local analysis given before that any possible
extremal that could start at z̃ is part of this family Γε(·). Essentially, trajectories
cannot switch to u = 0 before all inhibitors have been exhausted, and thus once they
switch to u = a they need to use up all remaining inhibitors.

It is just a consequence of the continuous dependence of a solution to an ordinary
differential equation on initial data and parameters that the end point pε(T (ε)) and
thus the value υ(ε) depend continuously on ε. Hence, if ε̂ is a parameter value where
υ(ε) attains its minimum over [0, θ], then Γε̂(·) is the optimal trajectory starting at z̃
with a correspondingly defined optimal control.

The family Γε(s), 0 ≤ s ≤ T (ε), is illustrated in Figure 8.1 for the initial condi-
tions p̃ = 10000 and q̃ = 3500. The reference trajectory is shown as a thick solid curve,
and some sample trajectories of Γε are shown as dashed-dotted curves. The heavily
dotted curve is the curve of points when all inhibitors are being exhausted. Here the
optimal control is of the type 0s0 and given for ε = θ; i.e., the optimal trajectory
follows u = 0 until the singular curve S is reached, then follows the singular arc until
all inhibitors have been exhausted, and finally uses u = 0 to reach the diagonal. This
is always the case for initial conditions whose available inhibitors are too small to
reach region II inside the loop S using the control u = a. This is the case for this
example, and in fact the only extremal corresponding to this initial condition is the
optimal trajectory Γθ. On the other hand, if initial conditions have an abundance of
inhibitors so that the singular arc would saturate, then optimal trajectories exit the
singular arc.
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Case 2. Let G = II ∪ D0 ∪ (III ∩ N+), i.e., the region inside the loop S, but
“above” the curve N0, and consider a well-posed initial condition z̃ = (p̃, q̃, 0) ∈ G.
Then the optimal control is initially given by u = a. (If the control starts with u = 0,
then the entire forward orbit lies in G, and in G switchings from 0 to a are not optimal
(cf. Propositions 7.1 and 7.2)). If the a trajectory starting at z̃ does not intersect the
admissible singular arc, the optimal control is simply u = a until all inhibitors have
been exhausted, and then u = 0 until the diagonal is reached. Nothing else needs to
be done in this case. Otherwise let ς− denote the reference trajectory that starts at
z̃ = (p̃, q̃, 0), uses the control u = a until the singular arc is reached at some time
τ , and then, as above, follows the singular arc for time σ until either all available
inhibitors have been exhausted or the saturation point is reached. Again we use the
time along the singular arc of the reference trajectory as a parameter and construct
the family Γε over the compact parameter interval [0, θ], with θ = σ as follows: The
trajectory Γε(·) agrees with the reference trajectory ς− along the initial segment for
u = a until the singular arc is reached at time τ and then Γε(·) still follows the singular
arc for time ε when it again switches to the control u = a. The end is as before: The
control u = a is used until all remaining inhibitors have been exhausted, at which time
a final segment with u = 0 is added until the trajectory terminates at time T on the
diagonal. Note that ε = 0 corresponds to the special case when the trajectory does
not follow the singular arc but continues straight with u = a. As above, this family
contains all possible extremals that start at z̃ but also may have some members that
are not extremals (for example, the second arc with u = 0 may violate Proposition
7.4). The optimal trajectory is given by Γε̂(·), where ε̂ is a minimizer of υ(ε) over
[0, θ]. In particular, in this case optimal controls at most have the form asa0 with
possibly some of the pieces absent.

Figure 8.2 shows an example of this family Γε(s), 0 ≤ s ≤ T (ε), for initial
conditions p0 = 8000 and q0 = 7000. Like in Figure 8.1 the reference trajectory ς− is
shown as a thick solid curve, sample trajectories from the family are shown as dashed-
dotted curves, and the heavily dotted curve of points is the curve when all inhibitors
have been exhausted. As above, no saturation occurs, and it is optimal to follow the
singular arc until all inhibitors have been exhausted (the trajectory corresponding to
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the rightmost parameter value θ gives the minimum value). Also for this example this
is in fact the only extremal.

This, however, is no longer true when there are still inhibitors available at the sat-
uration point. An example of this scenario is given for the initial condition p0 = 5000
and q0 = 2500 in region III. In this case, however, the numerical differences between
the values of the objectives are minute. In fact, no difference in the trajectories of
the family is discernable, and the cost varies only between 3761.65 and 3761.98. It is
clear that, although present mathematically, these differences are of no significance,
and for all practical purposes one may simply continue the singular arc at saturation
with u = a without any noticeable loss.

It is furthermore clear that the case of initial conditions with (p̃, q̃) on the admis-
sible portion of the singular arc can be analyzed in exactly the same way by setting
τ = 0. If the initial condition lies on the inadmissible portion, optimal controls are of
the form a0 with all inhibitors being exhausted along u = a.

Case 3. The last case corresponds to initial conditions (p̃, q̃) in the region F =
(III ∩ N−) ∪ (S ∩ D−) ∪ IV, i.e., points that lie in D− “below” N0. These initial
conditions all have relatively very large q-values in contrast to small p-values. In
these cases, in principle, the control can start with u = 0 and switch to u = a, while
still in F . Once the control is u = a, the trajectory enters the region G and the
construction of Case 2 applies. Thus, and if a large amount of inhibitors is available,
here the full structure 0asa0 can arise. Since trajectories eventually enter the region
G, and this leads to a repetition of the construction, we skip a precise description of
what now would be a two-parameter family of extremals over a compact rectangle.

9. Conclusion. We presented a complete solution for a mathematical model for
tumor antiangiogenesis for the problem of optimally scheduling a given number of
inhibitors in order to minimize the primary tumor volume. Based on our theoretical
analysis of the problem, for any specific initial condition the optimal solution can
easily be computed numerically and as such provides a benchmark value to which
other strategies should be compared. From a practical point of view, it is not realistic
to employ the singular control. It is a feedback control, and the required information
certainly is not available, although it could be predetermined offline from the initial
condition. Naturally, strategies of the type a0 which give all available inhibitors in one
session are the easiest to implement in practice. It follows from our analysis that for
some initial conditions these are indeed the optimal ones. This is certainly the case for
initial conditions for which a trajectories do not meet the admissible singular arc but
also for initial conditions when this intersection point is close to the saturation point.
Indeed, the dynamics for u ≡ a very much has a differential algebraic structure with
the q-dynamics fast and the p-dynamics slow. As a result, after a brief transient phase
in steady state the system essentially follows the q̇-nullcline. This nullcline is very
close to the singular curve near the saturation point, and thus there the differences in
the objective are almost unnoticeable. For initial conditions far away from this point
the singular arc and the q̇-nullcline are separated, and then the singular control is
noticeably better. Of course, only knowing the optimal solution allows one to make
such an analysis. However, this, and also comparisons with other models, will be
pursued elsewhere.

Here we only conclude with the statement that it is shown in [12, 13] that the
qualitative structure of optimal solutions as concatenations of the form 0asa0 for the
model by Hahnfeldt et al. [9] analyzed in this paper is exactly the same for the modified
model considered by Ergun et al. [6] while optimal controls are bang-bang with at
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most two switchings of the form 0a0 for the modification considered by d’Onofrio and
Gandolfi [5, 15].
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